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1 Introduction

These are notes from a talk on the Langlands conjectures. While I believe everything written here
to be spiritually correct, there are many details that I’m not sure of, so statements in these notes
should be checked before being repeated.

For simplicity, all reductive groups are connected.
There are two main sides to the Langlands conjectures, namely reciprocity and functoriality.

We’ve seen the reciprocity conjectures for GLn; we’ll state the reciprocity conjectures for general
reductive groups, as well as the functoriality conjectures. They are closely related, and though
often stated separately, one should understand them as inseparable parts of the Langlands philos-
ophy.

In the unramified case there is a nice classification of the representations on both sides of the
Langlands correspondence, so the conjectures are well understood, and it gives some small insight
into why one would expect something like Langlands to be true. So we’ll spend some time trying
to understand unramified representations, and this will form the basis for our understanding of
the Langlands conjectures.

To begin let’s recall the objects we’re working with, and the statements of local and global
Langlands for GLn. Throughout, k will denote a non-archimedean local field and K will denote a
global field; if the field is local or global, we’ll use K.

1.1 Local Langlands for GLn

We’ll discuss local Langlands only in the non-archimedean case (there are also conjectures in the
archimedean case, which we’ll ignore).

Let k be a non-archimedean local field; the local objects involved in the Langlands corre-
spondence are these. We say a representation V of GLn(k) is admissible if for every compact
open subgroup H ⊂ GLn(k) the subspace of fixed vectors VH is finite-dimensional, and V =⋃

H compact open VH . Essentially, admissible representations are built out of finite-dimensional
pieces. To such a thing we can associate a local L-factor and ε-factor, as well as L- and ε-factors for
pairs.

Recall the exact sequence

1→ Ik → Gal(k/k)→ Gal(κ/κ)→ 1,

where κ is the residue field of k. The Weil group of k is the subgroup of Gal(k/k) mapping to
integer powers of Frobp ∈ Gal(κ/κ), i.e. the preimage of Z ⊂ Ẑ = Gal(κ/κ). The Weil-Deligne
group is W ′k := Wk n Ga with respect to the action wxw−1 = ‖w‖x. We’ll consider representations
of the Weil-Deligne group, which can also be understood as representations of the Weil group
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together with a nilpotent endomorphism N. We can also associate L- and ε-factors to Weil-Deligne
representations.

The local Langlands conjectures for GLn essentially predict a correspondence between admis-
sible representations of GLn(k) and n-dimensional Weil-Deligne representations.

There is an equivalence of categories between bounded Weil-Deligne representations and `-
adic Galois representations (this is Grothendieck’s monodromy theorem), so local Langlands also
associates admissible representations to `-adic Galois representations.

Conjecture 1 (Local Langlands for GLn). Let k be a non-archimedean local field. For each n ≥ 1 there
is a (unique) bijection{

(isom. classes of) irreducible admissible
complex representations of GLn(k)

}
←→

{
(isom. classes of) F-semisimple representa-
tions W ′k → GLn(C)

}
π ←→ ρπ

satisfying the following conditions.

1. The n = 1 case is local class field theory.

2. If π, π′ are associated to ρπ , ρπ′ then

L(s, π × π′) = L(s, ρπ ⊗ ρπ′)

and
ε(s, π × π′, ψ) = ε(s, ρπ ⊗ ρπ′ , ψ)

where the left hand sides are L- and ε-factors for pairs.

3. If χ : k× → C× corresponds by local class field theory to χ : Wk → C× then ρπ⊗χ = ρπ ⊗ χ.

4. If π has central character χ : k× → C× then (again writing χ for its local class field theory partner)
det ρπ = χ.

5. ρπ∨ = ρ∨π .

Local Langlands for GLn is now a theorem; see e.g. [HT01] for more details.

1.2 Global Langlands for GLn

Now let K be a global field, and AK its ring of adeles. An automorphic representation of GLn(AK)
is is essentially a constituent of the regular representation

L2(GLn(K)\GLn(AK)).

The essential fact to remember is that every automorphic representation π of GLn(AK) decom-
poses as a restricted tensor product π = ⊗′πv into admissible representations πv of GLn(Kv) at
each place v of K (the Flath decomposition). Intuitively, modding by GLn(K) in the definition
means that being automorphic is a strong compatibility condition between the local representa-
tions. We can define an L-function

L(s, π) = ∏
v

L(s, πv)

as product of local L-factors, and similarly ε-factors, as well as L-functions and ε-factors for pairs.
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On the other side of the global Langlands correspondance is the conjectural Langlands group
LK, a global version of the Weil-Deligne group. Supposing such a group exists, the global
Langlands conjecture for GLn predicts a correspondence between automorphic representations
of GLn(AK) and admissible representations of LK. The precise form this conjecture should take
is not known, which is understandable since the Langlands group is not even known to exist.

However, as in the local case, the admissible representations of LK should include Galois
representations, and if we narrow down the automorphic side we can get a concrete conjecture of
a correspondence between automorphic representations and Galois representations.

First, we’ll need some definitions. Recall that an automorphic representation is cuspidal if it
occurs in a smaller space L2

0(GLn(K)\GLn(AK)) defined by the vanishing of some integral. There
is also a notion of L-algebraic, which concerns the infinite part; essentially, at the infinite place
there’s a complex space of parameters that can appear (classifying the “infinitesimal character”,
which is the character by which the center of the universal enveloping algebra acts), and a repre-
sentation is L-algebraic if these parameters at infinite places are actually integers.

An `-adic Galois representation is geometric if it is unramified at almost all places and de Rham
at ` (de Rham is a technical condition from p-adic Hodge theory). A collection of `-adic Galois
representations for each ` is compatible if it satisfies a compatibility condition we won’t go into; but
for example, from an elliptic curve E (or abelian variety) we get an `-adic Galois representation
from the Tate module T`E for each `, and these form a compatible system. Also, given a compat-
ible system of `-adic representations, we get a collection of local Weil-Deligne representations by
restricting to a local Galois representation Gal(Kv/Kv) → Gal(K/K) → GLn(Q`) and then using
Grothendieck’s monodromy theorem to produce a Weil-Deligne representation (the compatibility
ensures that this is independent of `).

Conjecture 2 (Global Langlands for GLn). Let K be a global field. For each n ≥ 1 there is a (unique)
bijection

{
(isom. classes of) L-algebraic cuspidal au-
tomorphic representations of GLn(AK)

}
←→

(isom. classes of) compatible systems of ir-
reducible geometric `-adic representations
Gal(K/K)→ GLn(Q`)


π ←→ {ρπ,`}

such that the local admissible representations on the left hand side correspond, by local Langlands, to the
local Weil-Deligne representations on the right hand side.

For more details see e.g. [Tay04] and [BG14].

2 Unramified Representations and the L-group

2.1 Unramified Representations of GLn

Back to the local case, with k a (non-archimedean) local field. A Weil-Deligne representation
(regarded as a pair (ρ, N) of a Weil representation ρ and endomorphism N) is unramified if N = 0
and ρ(Ik) = 1; that is, we have a factorization ρ : Wk → Z → GLn(C). So an unramified Weil-
Deligne representation is completely determined by the image of Frob. This image is a semisimple
element of GLn(C), determined up to conjugacy.

By local Langlands, these correspond to a class of admissible representations of GLn(k). We
say an admissible representation of GLn(k) is unramified if there is a fixed vector for the (max-
imal compact) subgroup GLn(Ok). This definition might take some unraveling to see why it
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deserves the name unramified, but suffice it to say that these are the admissible representations
corresponding to unramified Weil-Deligne representations.

In fact we can see directly that these representations are also parametrized by semisimple
conjugacy classes in GLn(C). This requires a fair amout of theory, but we can sketch the ideas.

Let B ⊂ GLn(k) be the Borel subgroup of upper triangular matrices. Given any n-tuple of
complex numbers u = (u1, . . . , un), we can define a 1-dimensional complex representation of B by

χu(bij) = |b11|u1+
n−1

2 |b22|u1+
n−3

2 · · · |bnn|u1+
1−n

2 .

(The extra factors in the exponents are a technical detail that can be ignored). Then we produce
a representation of GLn(k) by induction. (This is an example of the very important method
of parabolic induction, which is essential for understanding admissible representations). It is a fact
that this induced representation has a unique irreducible unramified constituent πu. Furthermore,
every irreducible unramified representation of GLn(k) arises in this way.

This is not quite a classification yet. It turns out that two tuples u, u′ define the same represen-
tation precisely when

(u′1, . . . , u′n) ≡ (uσ(1), . . . , uσ(n))mod
(

2πi
log p

)
Zn

for some permutation σ ∈ Sn; or equivalently, whenp−u′1 0
. . .

0 p−u′n

 and

p−u1 0
. . .

0 p−un


are conjugate in GLn(C) (exponentiating accounts for equivalence mod 2πi

log p Zn, and conjugacy
accounts for permutations). We see that an irreducible unramified representation π of GLn(k) is
classified by a conjugacy class of semisimple elements in GLn(C), which we denote by c(π).

So the local Langlands correspondence for GLn is (more) easily understood in the unramified
case: both sides are parametrized by semisimple conjugacy classes in GLn(C), and this gives the
desired bijection.

This parametrization by semisimple conjugacy classes is called the Satake classification, and it
extends to general reductive groups. The unramified representations of G(k) for a split reductive
group G are classified by semisimple conjugacy classes in the dual group Ĝ; for non-split groups
some extra Galois data is required. The classification in general is captured by the L-group, which
we now discuss.

2.2 The L-Group

Let’s briefly recall the classification of reductive groups by root data. That root data classify reduc-
tive groups (over an algebraically closed field) is a remarkable fact, and even rather mysterious—at
least to me. But let’s try to motivate it a bit.

Let G be a connected reductive group over an algebraically closed field. The starting point that
seems the least mysterious to me is the Bruhat decomposition, which says that if B ⊃ T are a Borel
subgroup and maximal torus of G (which we call a Borel pair), and W = NG(T)/T the associated
Weyl group, then

G = ä
w∈W

BwB,
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and there is a formula for how these double cosets multiply. Thus the group G is essentially
encoded in the data of a Borel pair B ⊃ T and the Weyl group of T.

As T is a split torus (our field is algebraically closed), we can remember its structure simply
from the character group X∗(T), or its dual, the cocharacter group X∗(T). To remember also
the Borel and Weyl group, we add the data of “simple roots” ∆∗ ⊂ X∗(T) and “simple coroots”
∆∗ ⊂ X∗(T). The “roots” are the (non-trivial) characters of T that appear in the action of T on
Lie(G), and “simple roots” are a certain subset of these depending on the Borel B. All this together
allows us to encode the group G in the combinatorial data Ψ(G) = (X∗(T), ∆∗, X∗(T), ∆∗).

Abstractly, a root datum is a tuple (X∗, R∗, X∗, R∗) where X∗, X∗ are finite-rank free Z-modules
dual under a pairing 〈·, ·〉 : X∗×X∗ → Z, and R∗ ⊂ X∗, R∗ ⊂ X∗ are finite subsets with a bijection
R∗ ↔ R∗, α↔ α∨ satisfying 〈α, α∨〉 = 2; furthermore, the reflections

sα(x) = x− 〈x, α∨〉α and sα∨(y) = y− 〈α, y〉α∨

are required to preserve R∗ and R∗ respectively. (The group generated by the reflections sα is the
Weyl group). A based root datum (X∗, ∆∗, X∗, ∆∗) is obtained by choosing a set of “simple roots”
∆∗ ⊂ R∗ and the dual coroots ∆∗ ⊂ R∗. (It is reduced if no root is twice another root).

Theorem 3. The map{
(isom. classes of) connected reductive
groups over an algebraically closed field

}
−→ {(isom. classes of) reduced based root data }

G 7−→ (X∗(T), ∆∗, X∗(T), ∆∗)

is a bijection. Furthermore, an isomorphism of reductive groups is determined up to inner automorphism
by the induced map on root data.

There is a natural notion of duality for (based) root data, given by exchanging characters for
cocharacters and roots for coroots:

(X∗, ∆∗, X∗, ∆∗)∨ = (X∗, ∆∗, X∗, ∆∗).

By the above theorem, this gives a duality for reductive groups. A dual group for G is a complex re-
ductive Lie group Ĝ equipped with an isomorphism Ψ(Ĝ) ∼= Ψ(G)∨. We can make this definition
for a connected reductive group over any field, but note that Ĝ depends only on the isomorphism
class over an algebraic closure, i.e. forms of the same group have the same dual.

Now suppose G is defined over a local or global field K. The classification theorem implies
that

1→ Gad → Aut(Ĝ)→ Aut(Ψ(Ĝ))→ 1

is a split exact sequence. The Galois group Gal(K/K) acts on Ψ(Ĝ) = Ψ(G)∨, and a choice
of splitting for the above exact sequence produces an action of Gal(K/K) on Ĝ, which factors
through Gal(K′/K) if G is split over K′. We can also consider this as an action of the Weil group
WK by composing with the natural morphism Wk → Gal(K/K). (There is a Weil group for global
fields, which we haven’t discussed). This action remembers G up to inner automorphism.

The L-group or Langlands dual group of a reductive group G defined over a local or global field
k is

LG = Ĝ oWK,

the semidirect product taken with respect to the above action. In particular, if G is split over K,
the LG = Ĝ ×WK. Since the action only remembers G up to inner automorphism, inner forms
have the same L-group.
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We could just as well define
LG = Ĝ o Gal(K/K),

or even
LG = Ĝ o Gal(L/K),

for some sufficiently large extension L/K, and everything we’re going to do would still work. The
main difference is that the Weil group has more representations than the Galois group, so the Weil
form of the L-group admits more L-homomorphisms than the Galois form (a notion which we’ll
define later). So the Weil form is more general in some sense, but at times it’s more useful or
illuminating to use the Galois form.

For more discussion on the L-group, see [BR94] and [Cog03].

2.3 The Satake Classification

Let G be a reductive group defined over a local field k. We can define a notion of unramified repre-
sentation of G whenever G is unramified, which is when G is quasisplit over Qp (meaning G has a
Borel subgroup and maximal torus B ⊃ T defined over Qp) and split over an unramified extension
E/Qp. The Satake classification states that unramified representations π of G(k) are classified by
conjugacy classes c(π) in LG whose projection to Ĝ is semisimple and whose projection to Wk
is Frob. If G(k) = G(Kv) is a local form at a place v of a group defined over a global field K,
and if G is split over a field in which v is unramified, this is the same as a conjugacy class in the
global L-group LG = Ĝ oGal(K/K) whose projection to Ĝ is semisimple and whose projection to
Gal(K/K) is Frobv. The conjugacy class c(π) is called a Satake parameter.

Now suppose G is defined over a global field K, split over an extension E/K, and unramified at
almost all places. Let π be an automorphic representation of G(AK), which in the decomposition
π = ⊗′πv is unramified at almost all places. To π we can associate a set of conjugacy classes
c(π) = {c(πv)} in Ĝ o Gal(E/K), the Satake parameters at all unramified places.

The point is that the automorphic representation π is encoded in the much more concrete data
of its Satake parameters. For further discussion of Satake parameters, see [Art03].

3 Langlands for Reductive Groups

The Langlands conjectures in their full generality encompass all reductive groups, not just GLn.
Reductive is a good class of groups to consider because we’re essentially studying their represen-
tations, and reductive groups have good representation theory. For example, an algebraic group in
characteristic zero is reductive precisely when its category of representations is semisimple. One
can consider automorphic representations of algebraic groups that are not reductive, but it’s not
clear if they are connected to other mathematics (in particular, it’s not clear if they’re connected to
Galois theoretic objects).

In order to start talking about this, we need to make some more general definitions. Many of
them are the same as in the case of GLn, but perhaps it’s reassuring to go over them again.

In the local case, let k be a local field and G a reductive group over k. A representation V
of G(k) is admissible if for any compact open subgroup H ⊂ G(k) the subspace of fixed vectors
VH is finite-dimensional, and V =

⋃
H compact open VH . These should have local L- and ε-factors

associated to them, but we’ll return to this later.
In the global case, let K be a global field and G a reductive group over K. An automorphic

representation of G(AK) is essentially a constituent of

L2(G(K)\G(AK)).
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As in the GLn case, these decompose as a restricted tensor product π = ⊗πv of admissible
representations πv of G(Kv).

To formulate Langlands reciprocity for general reductive groups, GLn is replaced on one side
by G and on the other by LG. This is not all that changes; there are some aspects of the GLn case
that are deceptively simple. Perhaps the biggest is the existence of L-packets. For general groups,
the map from automorphic representations to Galois representations is no longer expected to be
a bijection, but a finite-to-one map, and the fibers are called L-packets.

3.1 Local Langlands

In the local case for GLn, the Galois side is F-semisimple representations W ′k → GLn(C). For a
general reductive group G over a local field k, we say a homomorphism φ : W ′k →

LG is admissible
if

1. the induced map Wk →Wk is the identity;

2. φ is continuous, maps semisimple elements to semisimple elements, and φ(Ga) is unipotent
in Ĝ; and

3. if the image of φ is contained in a Levi subgroup of a proper parabolic subgroup P of LG,
then P is relevant.

For definitions here that I’ve left out, and more details, see [Cog03].

Conjecture 4 (Local Langlands). Let k be a local field. Then there is a (unique) surjective map{
(isom. classes of) irreducible admissible
complex representations of G(k)

}
−→

{
(isom. classes of) admissible homomor-
phisms W ′k →

LG

}
with finite fibers, satisying the following coditions. Let Aφ be the fiber, i.e. L-packet, over an admissible
homomorphism φ.

1. If π ∈ Aφ, the central character of π is constructed from φ is a specified way.

2. Compatibility with twisting: (if α ∈ H1(W ′K, C(Ĝ)) and χα is the associated character of G(K), then
Aα·φ = Aφ · χα).

3. Some π ∈ Aφ is square integrable modulo C(G) iff all π ∈ Aφ are square-integrable modulo C(G)
iff φ(W ′K) does not lie in a proper Levi subgroup of LG.

4. Some π ∈ Aφ is tempered iff all π ∈ Aφ are tempered iff φ(WK) is bounded.

5. If H is a connected reductive K-group and η : H(K) → G(K) is a K-morphism with commutative
kernel and cokernel, then there is a required compatibility berween decompositions for admissible
representations of G(K) and H(K). To be precise, η induces a map Lη : LG → L H, and if we define
φ′ = Lη ◦ φ for φ : W ′K → LG, then any π ∈ Aφ regarded as a representation of H(K), should
decompose into a direct sum of finitely many members of Aφ′ .

3.2 Global Langlands

The global Langlands conjecture for a general reductive group G over a global field K should be a
map{

(isom. classes of) irreducible automor-
phic representations of G(AK)

}
←→

{
(isom. classes of) admissible homo-
morphisms LK → LG

}
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satisfying certain conditions, including a local-global compatibility; but the exact form and spec-
ifications are not well understood. There is also not a well-formulated conjecture relating auto-
morphic representations to Galois representations, although there had been some work in this
direction. For example, Buzzard and Gee [BG14] give a precise conjecture of a map from certain
automorphic representations to Galois representations in the general case.

4 Functoriality

Now we turn our attention to functoriality. For more discussion, see [Cog03] and [Art03]. While
the reciprocity conjectures relate automorphic representations to Galois representations, functori-
ality relates automorphic representations of different groups.

If H, G are connected reductive groups over a (local or global) field K, an L-homomorphism
between LH and LG is a continuous homomorphism L H → LG such that the induced map Ĥ → Ĝ
is a morphism of complex Lie groups and the induced map WK →WK is the identity.

The principle of functoriality is that L-homomorphisms should give rise to maps between
admissible/automorphic representations of the groups involved; or more precisely, between L-
packets. There are certain cases where we can lift individual representations, but there is reason
to believe that the lifting should not descend to individual representations in general.

I know two main ways to contextualize this. First, in relation to the Satake classification of
unramified representations. Recall that Satake parameters are essentially conjugacy classes in the
L-group, and they parametrize irreducible unramified representations of the local group. An L-
homomorphism L H → LG is essentially a recipe for transferring Satake parameters from H to G,
and so there should be a corresponding transfer of representations from H to G.

Second, in relation to Langlands reciprocity. If η : L H → LG is an L-homomorphism, then
composing with η gives a map{

(isom. classes of) admissible homo-
morphisms W ′k →

L H or LK → L H

}
−→

{
(isom. classes of) admissible homo-
morphisms W ′k →

LG or LK → LG

}
.

Now if these two sets parametrize admissible/automorphic representations of H or G respectively,
then we get a map of L-packets from H to G, which is the functorial lift.

Functoriality also implies some cases of reciprocity. If we take H = 1 and G = GLn, then LH =
Gal(K/K), and an L-homomorphism L H → LG is a complex Galois representation. In the global
case, this should give rise to a map from automorphic representations of H(AK) to automorphic
representations of G(AK). But the former set has one element, so really we’re associating an
automorphic representation to a Galois representation.

4.1 Local Functoriality

Conjecture 5 (Local Functoriality). Let k be a local field, and G, H reductive groups over k. If φ : L H →
LG is an L-homomorphism, then there is an associated map{

(L-packets of) admissible representations
of H(k)

}
−→

{
(L-packets of) admissible representations
of G(k)

}
π −→ π′

called a transfer or lifting (or various other things), which in the unramified case is given by c(π′) =
φ(c(π)).
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There is no good idea of what should determine the lifting in general. Compatibility with local
reciprocity does determine it, but one would hope for a more explicit condition.

Because the functorial lift can be constructed via the reciprocity maps, functoriality is well
understood whenever the corresponding case of reciprocity is. Namely,

1. k archimedean, H a connected reductive group and G a quasisplit reductive group;

2. k non-archimedean, H and G general linear groups;

3. and in the unramified case. Suppose k is a non-archimedean field and G, H are both unrami-
fied over k. Let π be an unramified representation of H(k) and φ : W ′k →

L H the correspond-
ing unramified Weil-Deligne representation. Then for any L-homomorphism u : LH → LG,
the composition u ◦ φ : W ′k →

LG is unramified. Furthermore the L-packet for u ◦ φ con-
tains a unique representation Π of G(k) which is unramified. This Π is called the natural
unramified lift of π.

4.2 Global Functoriality

Conjecture 6 (Global Functoriality). Let K be a global field, and G, H reductive groups over K. If
φ : L H → LG is an L-homomorphism, then there is an associated lifting{

(L-packets of) automorphic representa-
tions of H(AK)

}
−→

{
(L-packets of) automorphic representa-
tions of G(AK)

}
π −→ π′

such that c(π′p) = φ(c(πp)) at all places where both are unramified.

The global case is more difficult, because global reciprocity is less well understood. However,
we do have local-global compatibility at our disposal. If L H → LG is a global L-homomorphism,
it induces local L-homomorphisms LHv → LGv at all places v. If π = ⊗′πv is an automorphic
representation of H(AK), then for infinite places v we know how to lift (as long as G is quasisplit),
and for almost all finite places v the groups G, H are both unramified at v, and so we can take the
natural unramified lift Πv of πv.

We say that an automorphic representation Π = ⊗′Πv of G is a weak functorial lift of π = ⊗′πv
if Πv is a local functorial lift of πv at all infinite places and almost all finite places. If it is a local
functorial lift at all places, we say Π is a strong functorial lift of π.

(Note: we’re glossing over the fact noted earlier that in general functoriality operates on the
level of L-packets).

5 Examples

There are many specific examples of functoriality that have been proven and made use of. For
more discussion of this, including what we cover, see [Cog03].

5.1 Automorphic Tensor Product

We can see a hint of functoriality in the form of L-functions. Namely, to two automorphic repre-
sentations π, π′ of GLn there is associated an L-function L(s, π× π′) with nice analytic properties
(i.e. analytic continuation and functional equation), which should correspond by Langlands to an
L-function L(s, ρπ ⊗ ρπ′).
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At the moment, there is no definition for a representation π × π′, only its L-function. But such
a representation is predicted by functoriality. If we set

H = GLm×GLn and G = GLmn,

then
L H = GLm×GLn×WK and LG = GLmn×WK,

and the tensor product map GLm×GLn → GLmn extends to an L-homomorphism L H → LG. The
corresponding map of automorphic representations predicted by functoriality is our automorphic
tensor product π, π′ 7→ π × π′.

5.2 Lifting Between Inner Forms

We observed earlier that inner forms have the same L-group. If H, G are inner forms, then the
identity map LH → LG is an L-homomorphism, and functoriality predicts a map from automor-
phic representations of H to G. In the case where H = GL2 and G = D× is the multiplicative
group of a rank 2 division algebra over K (an inner form of GL2), this is the Jacquet-Langlands
correspondence, which was one of the first known cases of functoriality.

5.3 Base Change

An important example of functoriality for arithmetic applications is base change. If L/K is a
finite extension of local or global fields, then there is a natural inclusion WL → WK. Let H be
a connected reductive group split over K, and G = ResL/K(H ×K L). Then there is a natural
diagonal embedding

L H = Ĥ ×WK →

 ∏
WL\WK

Ĥ

oWK = LG,

and the corresponding functorial lift is called base change.

6 Methods of Proof

6.1 Trace Formula

One method of proof for the functoriality conjectures is the trace formula. This subject is enor-
mously complicated, but we can give a sketch of the motivating idea, following [Gel84].

Say we want to understand the representations of G(AK) occurring in L2(G(K)\G(AK)) (or
possibly the cuspidal space L2

0, since that one actually decomposes nicely). Let Π : G(AK) →
GL(L2

0). As is often the case in representation theory, it is helpful to consider the characters of
our representations. Of course, automorphic representations are generally infinite-dimensional,
so we can’t take a naive trace. Instead, if f is a smooth (i.e. smooth on the archimedean places
and locally constant on non-archimedean places) compactly supported function on G(AK), we
can show that

Π( f )v =
∫

G(AK)
f (g)Π(g)vdg

is a trace class operator, so we can take its trace.
Now we compute the trace of this operator in two ways: first, using its expression as an integral

operator; and second, using the decomposition of L2
0. The equality of these two expressions is the
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“trace formula” for G. By comparing the two sides of the formula, we hope to learn something
about the automorphic representations of G.

This turns out to be quite hard. But what we can do is compare the trace formulas for different
groups to get results comparing their automorphic representations, e.g. functoriality.

6.2 Converse Theorem

Another method of proof for functoriality is converse theorems—for more discussion, see [Cog03].
We’ve seen that L-functions associated to automorphic objects have nice analytic properties, such
as analytic continuation and functional equation. A “converse theorem” states that if the L-
function of a representation has enough nice analytic properties, then the representation is au-
tomorphic.

For simplicity, say H = GLm and G = GLn. Let π = ⊗′πv be an automorphic representation of
H, and suppose we have an L-homomorphism L H → LG. Then we get local L-homomorphisms
at each place, and since local functoriality is understood for general linear groups, we can make
local lifts π′v of πv at all places. We’d like to say π′ = ⊗′π′v is the functorial lift of π, but this isn’t
clear because we don’t know π′ is automorphic.

But since we have local functoriality at all places, we have equality of local L-factors and
ε-factors at all places, and therefore globally as well. This allows us to establish nice analytic
properties for the L-function of π′ using the L-function of π, which we know to be automorphic.
Then by a converse theorem we can conclude that π′ is automorphic, and therefore a functorial
lift of π.

Still, with all this, only very few special cases of functoriality are known. The full conjectures
seem to be far off.
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